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Atopic dermatitis (AD) is a common chronic inflammatory skin disease that has increased in prevalence over the
last half century. A growing body of evidence suggests that there are a variety of defects in the innate immune
system that collectively affect the development and severity of AD. The reduction in antimicrobial peptides,
diminished recruitment of innate immune cells (PMNs, pDC, and NK cells) to the skin, epithelial barrier
disruption, and TLR2 defects are just some of the credible explanations for AD patients’ susceptibility to
pathogens such as Staphylococcus aureus, herpes simplex virus, and vaccinia virus. Although the focus for
several years has been to identify defects in the innate immune system that might explain AD patients’
susceptibility to cutaneous pathogens, it has become clear that some innate immune defects might promote
inflammation and thereby aggravate or even induce the development of AD. Here we review the innate immune
system, and highlight many of the potential innate networks that may be important in AD patients susceptible to
cutaneous pathogens.
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Editor’s Note
Atopic dermatitis (AD) and other atopic diseases have been
described throughout the history of medical literature. In
ancient China, a clinical condition similar to what is now
called atopy was described (Ring, 2005). Emperor Octavia-
nus Augustus is one of the first individuals to be described
with atopy, suffering, according to Suetonius, from ‘‘ex-
tremely itchy skin, seasonal rhinitis and tightness of the
skin’’ (Suetonius: De Vita Caesarum; Ring, 2005). The term
‘‘atopy’’ was coined by Coca and Cooke (with the help of
the linguist Edward D. Perry of Columbia University), who
in 1923 attempted to develop a classification for ‘‘hyper-
sensitiveness’’, an abnormal level of sensitiveness for which
the mechanism was not known. ‘‘Atopy’’ is derived from
the Greek ‘‘atopı́a’’, denoting a reaction that constituted a
‘‘strange or eccentric disease’’ (Coca and Cooke, 1923).
While our understanding of atopy has advanced enor-

mously since then, the detailed mechanisms of atopy and
AD remain a mystery. In this issue, we begin a Perspectives
series on AD in which De Benedetto et al describe the role
of the innate immune response in AD, highlighting the ‘‘out
of place‘‘ reaction that occurs. Attempts to understand the
pathogenesis of atopy through animal models has proven
difficult; in the second of the series Jin et al review animal
models that have nonetheless lent us important clues. In
future issues, articles related to the genetics of AD, its
general immunology, and barrier function will be pre-
sented. Together, these contributions will update our
readers on our understanding of the pathogenesis of atopy,
that ‘‘strange disease’’ that Coca and Cooke first attempted
to classify 85 years ago.
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INTRODUCTION
Atopic dermatitis
Atopic dermatitis (AD) is a highly
pruritic, chronic inflammatory skin dis-
ease that affects up to 20% of children
worldwide and can persist into adult-
hood (Leung et al., 2004b). It has a
significant impact on the quality-of-life
of patients and their families and the
economic impact is measured in bil-
lions of dollars (Akdis et al., 2006;
Delea et al., 2007). More than 50% of
patients develop asthma and other
atopic disorders, adding further to the
health and economic burden of this
disease (Kapoor et al., 2008). AD
patients have frequent bacterial and
viral skin infections (Nishijima et al.,
1995; Cho et al., 2001). Approximately
80–100% of AD patients are colonized
on nonlesional skin as compared to
5–30% of healthy controls (Hauser
et al., 1985; Breuer et al., 2002). In
addition to increased colonization,
50–60% of the Staphylococcus aureus
found in AD patients are toxin produ-
cing (Akiyama et al., 1996). Further-
more, AD patients can rapidly advance
to superinfection with 107 organisms
per cm2 in acute lesions, as opposed to
nonatopic controls who maintain a low
bacterial burden (Leung and Bieber,
2003). AD patients with persistent S.
aureus colonization despite therapy,
are characterized by higher IgE levels
suggesting that Th2 polarization ad-
versely affects the immune response to
this pathogen (Guzik et al., 2005).
About 30% of patients with AD report
bacterial infections compared to only
6% of psoriasis patients (Christophers
and Henseler, 1987). Cutaneous viral
infections caused by vaccinia virus
(VV) called eczema vaccinatum and
by herpes simplex virus (HSV) referred
to as eczema herpeticum have been
shown to occur primarily in AD
patients (Wollenberg et al., 2003a). In
fact it was in 1948, that the Journal of
Pediatrics in a review article on gen-
eralized vaccinia recommended that
‘‘patients with eczema should not be
vaccinated and should not remain in
the same household with those recently
vaccinated’’ (Fries and Borne, 1949).
Since that time epidemiological data
suggests that AD patients with more
severe disease (earlier age of onset,

persistence into adulthood, higher total
IgE, higher Eczema Area and Severity
Index scores) and with greater Th2
polarity (increased frequency of other
atopic disorders and elevated serum
thymus- and activation-regulated chemo-
kine levels) are at greatest risk for skin
infections with HSV or S. aureus
(Wollenberg et al., 2003b; Guzik
et al., 2005; Peng et al., 2007; Beck
et al., 2008).

Over the last two decades it has
become clear that the most effective
mammalian response to microbes in-
volves a delicate balance between the
innate and adaptive arms of the im-
mune system. Although the interactions
between these two pathways are nu-
merous and complex, the current data
suggests that the susceptibility to cuta-
neous infections is largely due to
abnormalities of the innate system
(McGirt and Beck, 2006). Some of the
innate immune defects observed in AD
are primary defects such as epithelial
barrier defects and defects in signaling
or expression of innate receptors and
others may be secondary to the effects
of the adaptive immune response
namely Th2 cytokines. For example,
deficiencies in antimicrobial peptides
(AMPs) and the barrier proteins ob-
served in the skin of patients with AD
may be due, in part, to the overexpres-
sion of Th2 cytokines such as IL-4 and
IL-13 (Ong et al., 2002; Howell et al.,
2007). After a brief introduction to the
innate immune system in the section
that follows, we will highlight many of
the potential defects that may be
important for AD patients’ susceptibil-
ity to cutaneous pathogens.

Innate immune system
The immune system protects the host
from pathogens and initiates the repair
process following injury or trauma. In
vertebrate animals this is achieved by a
finely orchestrated interaction between
the innate and adaptive immune path-
ways (Kabelitz and Medzhitov, 2007;
Palm and Medzhitov, 2007). Phylogen-
etically, the innate immune system is
the oldest and acts as the first line of
defense against environmental insults.
It acts rapidly, with remarkable ability
to distinguish sequences unique to
pathogens compared to self, but with

less specificity for the individual patho-
gen. The innate immune system senses
microbes through a group of germline-
encoded proteins, named pattern-
recognition receptors (PRRs; Janeway
and Medzhitov, 2002). PRRs include
transmembrane and intracellular recep-
tors, including Toll-like receptors
(TLRs), nucleotide-binding oligomeri-
zation domain (NOD)-leucine rich
containing protein family such as
NOD1 and 2, helicases such as retinoic
acid-inducible gene-I and melanoma
differentiation-associated gene 5 and
the double-stranded RNA binding ki-
nase, as well as soluble molecules
found in both intra- and extravascular
compartments such as pentraxins (pen-
traxin-related protein and C-reactive
protein), collectins (mannose-binding
lectin (MBL) and ficolins; Table 1;
Janeway and Medzhitov, 2002;
Medzhitov, 2007). PRRs recognize
highly conserved molecular patterns
common to many classes of pathogens,
known as pathogen-associated mole-
cular patterns (Medzhitov and Jane-
way, 2002). Pathogen-associated
molecular patterns include bacterial
cell-wall components (such as lipopo-
lysaccharide (LPS), peptidoglycan
(PGN), and lipoteichoic acid), fungal
cell wall (zymosan), viral double-
stranded RNA molecules, and un-
methylated CpG DNA primarily found
in bacteria. PRR activation results in the
production of cytokines, chemokines,
and AMPs, as well as the activation and
recruitment of immune cells (immature
dendritic cells (DCs), natural killer (NK)
cells, and neutrophils (PMNs)).

These innate responses occur ra-
pidly and are efficient at killing patho-
gens and containing or limiting tissue
injury. The innate immune system also
initiates and determines the magnitude
and the specific outcome of the adap-
tive immune response which takes days
to develop, and provides long lasting
immunologic memory (Hammad and
Lambrecht, 2008). The adaptive im-
mune response requires somatic muta-
tions leading to the development of
antigen-specific T-cell receptors (cell-
mediated immunity) and immuno-
globulins (humoral immunity).

Interestingly, recent studies have
shown that adaptive immunity may in
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fact regulate the innate response and by
so doing minimize the tissue damage
that develops as a consequence of
innate inflammatory cell influx. For
example, regulatory T cells are able to
repress the innate responses in vitro as
well as in vivo (Lu et al., 2006a;
Ralainirina et al., 2007). Interestingly,
Lu et al.(2006a) have demonstrated that
the protective actions of Treg in an
allograft tolerance model depend, at
least in part, on the recruitment and
activation of mast cells. Kim et al. have
recently shown that nude mice (lacking
T lymphocytes) inoculated with a sub-
lethal dose of mouse hepatitis virus
died from tissue damage caused by a
‘‘cytokine storm’’ (IFNg and tumor
necrosis factor-a) released by innate

immune cells rather than overwhelm-
ing infection (Palm and Medzhitov,
2007; Kim et al., 2007b). By adoptive
transfer of specific lymphocyte subsets
in Rag-deficient mice, which lack both
T and B lymphocytes, they were able to
show that this overly robust innate
immune response could be attenuated
by CD4þ or CD8þ lymphocytes (for
example, cells of adaptive immune
system). Although it has generally been
accepted that the adaptive response
arises several days after the innate,
these studies suggest that part of the
adaptive response may in fact coincide
with the early innate immune response
and provide a critical suppressive
action on the inflammation induced
by innate pathways. Whether the adap-

tive response (for example, Th2 cyto-
kines) is suppressing the innate immune
response in AD patients is a plausible
theory.

The skin and mucosal surfaces
(gastrointestinal, respiratory, urogen-
ital) by virtue of their direct interface
with the environment are the sites
where innate and adaptive immunity
are established and have their greatest
interaction (Clark and Kupper, 2005).
The skin innate immune system con-
sists of three major components: ana-
tomical/physical barrier (stratum
corneum (SC) and intercellular junc-
tions), cellular (antigen presenting
cells, keratinocytes (KCs), mast cells,
and PMNs), and secretory elements
(AMPs, cytokines, and chemokines;
Table 2). We will review the compo-
nents of a healthy cutaneous immune
response and highlight which of these
are altered in patients with AD.

PATTERN RECOGNITION
RECEPTORS
TLR1–10 are the best characterized
human PRRs and are expressed on both
the cell surface (TLR1, 2, 4–6, 10) and
intracellularly in the endosomes (TLR3,
7–9; Kaisho and Akira, 2006). The
function of TLRs is to induce inflamma-
tion and DC maturation, which deter-
mines the character and quality of the
adaptive immune response. Most TLR
ligands promote the development of
Th1 or Th17 cells that are important for
antibacterial and antiviral immunity
(Weaver et al., 2007). Interestingly,
weak TLR2 and TLR4 signals in the
context of allergen exposure in the skin

Table 2. Skin innate immunity and related defects observed in AD patients

Skin innate
system Major components AD defects

Anatomical/
physical barrier

Cornified envelope Reduced FLG, LOR, and INV expression; SPINK5 deficit;
cystatin M/E deficit; enhanced SCCE expression; reduced
lipids (ceramides, sphingosine); trauma from
itch-scratch cycle

Tight junctions Reduced claudin-1

Cellular
elements

PMN, NK, DC,
LC, Mast cell, KC

Reduced function or migration into the skin of effector
cells (PMN, NK, pDC);
PRRs dysfunction (TLR2, TLR9, NOD1/2)

Secretory
elements

AMP Decreased AMPs (HBD2, HBD3, LL37, DCD, sphingosine)

Cytokines/
chemokines

Reduction in MIP3a /CCL20, IL-8/CXCL8

AD, atopic dermatitis;AMP, antimicrobial peptide; DC, dendritic cell; DCD, dermcidin; HBD, human
b-defensin; KC, keratinocyte; LL-37, cathelicidin; MIP-3a, macrophage inflammatory protein-3a; NK,
natural killer; NOD, nucleotide-binding oligomerization domain; pDC, plasmacytoid DC; PMN,
neutrophil; PRR, pattern-recognition receptor; SCCE, stratum corneum chymotryptic enzyme;
SPINK5, serine protease inhibitor, Kazal-type; TLR, Toll-like receptor.

Table 1. Pathogen related receptors (PRRs) that may be defective in subjects with AD

PRRs Defects in AD Cell Ligands Major function

TLRs TLR2 KC, DC, LC, PMN,
Monocyte, Mast cell, NK

Bacterial components
(LPS, PGN, LTA) or yeast (Zymosan)

Production of AMPs, chemokines,
and cytokines.

TLR9 B cell, pDC, NK, KC Viral and bacterial CpG

NLRs NOD1–2 KC, DC, LC, phagocytes, PGN (Gram-positive and -negative bacteria) Production of cytokines, chemokines,
and AMPs.

CD14 ? DC, KC, macrophages LPS and other bacterial components Production of cytokines and chemokines

Soluble PRRs MBL (?) Surface of microbes Opsonization or lysis of microbes.
Leukocyte chemotaxis

AMP, antimicrobial peptide; DC, dendritic cell; KC, keratinocyte; LPS, lipopolysaccharide; LTA, lipoteichoic acid; MBL, mannose-binding lectin; NK,
natural killer; NLR, NOD leucine rich containing protein; NOD, nucleotide-binding oligomerization domain; pDC, plasmacytoid DC; PGN, peptidoglycan;
PMN, neutrophil; TLR, Toll-like receptor.
?, contradictory evidence.
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and lung, respectively, have been
shown to promote a Th2-biased im-
mune response (Chisholm et al., 2004;
Eisenbarth et al., 2004). Therefore, the
character of the innate immune
response may actually cause inflam-
matory diseases such as AD by both
promoting a Th2 response to otherwise
innocuous environmental antigens (for
example, allergens) as well as preventing
the effective eradication of S. aureus.

The expression and function of most
TLRs was initially characterized on
antigen-presenting cells, PMNs, and
mast cells. More recently, KCs have
been recognized as active participants
in the innate immune response in the
skin (Esche et al., 2004). KCs constitu-
tively express mRNA for TLR1, 2, 3, 4,
and 5, and potentially 6–10 (Meyer
et al., 2003; Kollisch et al., 2005;
McInturff et al., 2005). The functions
of TLR 1–5, 7, and 9 have been implied
by the expression of immune response
genes following TLR-specific ligand
stimulation (Meyer et al., 2003;
McInturff et al., 2005; Lebre et al.,
2007). In response to ligation of these
receptors, KC produce a number of
mediators relevant for an immediate
response to pathogens such as epithe-
lial adhesion molecules, and molecules
involved in direct antimicrobial ac-
tions, cell activation, apoptosis, prolif-
eration, and chemotaxis.

When compared to most other TLRs,
TLR2 recognizes a remarkably broad
range of ‘‘pathogen-associated motifs’’
or pathogen-associated molecular pat-
terns, such as several components of
Gram-positive bacteria (that is, PGN
and lipoteichoic acid) as well as LPS
from various Gram-negative bacteria
and fungi and potentially even herpes
viruses (Sato et al., 2006; Zahringer
et al., 2008). HSV can trigger responses
through TLR2 (TLR3, TLR7, and TLR9;
Lund et al., 2003; Sato et al., 2006).
Importantly, a recent study highlights
the association of several TLR2 poly-
morphisms and increased viral shed-
ding and increased genital lesion
counts in patients with genital herpes
(HSV-2; Bochud et al., 2007). It is
appealing to hypothesize that TLR2
pathway defects may be responsible
for AD patients’ susceptibility to S.
aureus and HSV.

TLR2’s broad microbial responsive-
ness probably comes from its unique
ability to homodimerize as well as
heterodimerize with TLRs 1 and 6
(Triantafilou et al., 2006). An impair-
ment of TLR2-mediated inflammatory
cytokine production (IL-1b and tumor
necrosis factor-a) was recently demon-
strated in peripheral blood monocytes
from AD patients stimulated with the
synthetic TLR2 ligand, C81H156N10O13S
3HCl (Hasannejad et al., 2007). We
have noted a similar defect in KC
propagated from nonlesional skin of
AD patients (McGirt et al., 2006). This
finding in both monocytes and KC
could not be explained by differences
in TLR2 surface expression (Hasanne-
jad et al., 2007). Interestingly, this
impairment was specific to TLR2, with
no defects noted in response to TLR4
ligands. It is important to note that the
‘‘weak’’ TLR2 response observed in AD
KC and monocytes may not only render
AD patients incapable of eradicating
the bacteria colonizing their skin but
may also promote a Th2 response as
noted above. We have recently demon-
strated that another function of TLR2 on
KC is to enhance/repair tight junction
(TJ) function (Beck, De Benedetto
personal communication). Whether
this important function is also defective
in AD KC is an important question.

The TLR that has been evaluated
most extensively for its role in the
development and infectious complica-
tions observed in patients with AD is
TLR2. Humans heterozygous for the
TLR2 R753Q mutation are prone to
staphylococcal infections (Lorenz
et al., 2000). In one study 11.5% of
AD patients were heterozygous for this
missense mutation and this tracked
with a more severe disease phenotype
(Ahmad-Nejad et al., 2004). This same
research group demonstrated that
monocytes from AD patients hetero-
zygous for this TLR2 mutation had
dramatically reduced IL-8 production
in response to PGN compared to wild-
type AD patients (Mrabet-Dahbi et al.,
2008). This work contrasts with a study
of 275 German parent-offspring trios,
which utilized four common TLR2
haplotypes and found no association
with AD (Akdis et al., 2006). In
summary, this work suggests that the

TLR2 pathway may be defective in AD
patients on a genetic or acquired basis
with possibilities that include altered
TLR2 structure or altered expression/
function of signaling proteins or nega-
tive regulatory elements that have
recently been implicated in attenuating
TLR pathways. Potential negative reg-
ulatory pathways include proteins such
as Toll-interacting protein or soluble
TLRs (Liew et al., 2005). A preliminary
screen of 50 AD patients for variations
in the coding region of Toll-interacting
protein identified two unique amino-
acid substitutions in exons 4 and 6
but these were not associated with AD
in a larger cohort (4300 patients;
Schimming et al., 2007).

Most TLRs and IL-1 receptor (IL-1R)
family members transduce a signal
through the intracellular adapter mole-
cule called myeloid differentiation fac-
tor 88 (MyD88), which leads to the
nuclear translocation of NF-kB and
other transcription factors (Brikos and
O’Neill, 2008). In contrast, TLR3 uti-
lizes a MyD88-independent pathway
that leads to type 1 IFN production,
which is thought to be critical for viral
clearance. Interestingly, in a murine S.
aureus cutaneous infection model,
MyD88- and IL-1R-deficient mice had
much higher bacterial counts and more
reduced tissue neutrophilia than the
TLR2-deficient mouse suggesting that
these innate pathways must diverge,
and highlighting the importance of IL-
1R and other MyD88-dependent path-
ways in containment of S. aureus skin
infections (Miller et al., 2006). Impor-
tantly, reconstitution of IL-1R-deficient
mice with wild-type bone marrow
failed to correct the defect suggesting
that resident cells (not hematopoietic
cells) are the ones that release the PMN
chemoattractants in response to IL-1.
The role of IL-1 superfamily members
in AD remains unclear (Braddock et al.,
2004). In one study there was an
increased ratio of IL-1R antagonist to
IL-1a in the SC of AD patients, which
was similar to that observed in patients
with psoriasis and greater than that
seen in healthy controls (Terui et al.,
1998). This is in contrast to a study
demonstrating greater IL-1 release in
peripheral blood mononuclear cells
and purified monocytes from AD pa-
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tients in response to LPS compared to
controls (Thestrup-Pedersen et al.,
1990). Another member of the IL-1
family, IL-18, known to be a mediator
of inflammation and innate immunity,
is expressed by KC and like IL-1b is
downregulated by corticotropin-releas-
ing hormone (Park et al., 2005). As AD
is known to be exacerbated by stress, it
can be hypothesized that stress-in-
duced release of corticotropin-releas-
ing hormone and the ensuing reduction
of IL-18 and IL-1b may also be invoved
in AD patients’ susceptibility to cuta-
neous infections.

Although TLR3 binds viral double-
stranded RNA, its role in host defense
against the DNA viruses, HSV and
vaccinia, remain quite perplexing.
Two unrelated children were recently
reported with dominant negative TLR3
allele who developed HSV-1 encepha-
litis with no skin disease (Zhang et al.,
2007). These patients’ NK and CD8þ
T cells had impaired responsiveness to
the TLR3 ligand (poly(I:C)), whereas
their blood derived DCs and KC
responded normally suggesting that
TLR3 is essential for primary immunity
to HSV-1 in the central nervous system
but not at other anatomical sites such
as the skin (Zhang et al., 2007).
Interestingly plasmacytoid DCs, which
are factories for the potent antiviral
type 1 IFNs are not thought to express
TLR3 (Iwasaki and Medzhitov, 2004).
TLR3"/" mice infected intranasally
with vaccinia had improved survival,
reduced lung inflammation suggesting
that TLR3 signaling contributes to the
pathogenesis of severe poxvirus infec-
tions (Hutchens et al., 2008). There
have been no published studies on
TLR3 polymorphisms in AD but one
might expect that any observed muta-
tion would most likely lead to a gain-
in-function rather than a loss if it was to
explain these patients susceptibility to
eczema vaccinatum or eczema herpe-
ticum.

TLR9, which is found within the
endosome, can bind both viral and
bacterial CpG DNA and therefore may
be a relevant PRR for both S. aureus
and HSV or vaccinia infections. It is
expressed on plasmacytoid DCs, NK
cells, B cells, and KC. Activation of
TLR9 on plasmacytoid DCs (pDCs) and

B cells induce a Th1-biased response.
In a recent publication, the TLR9
polymorphism C-1237T, which results
in higher promoter activity, was
associated with the intrinsic variant of
AD (Novak et al., 2007). Of all the AD
cases, 10-20% are called intrinsic
based on the lack of associated atopic
disorders and no allergen sensitiza-
tions. But intrinsic cases are otherwise
clinically indistinguishable from the
more common extrinsic variant with
the exception that intrinsic subjects
have slightly reduced expression of
Th2 cytokines (IL-5 and IL-13) in
lesional skin. One would assume that
such a gain-in-function TLR9 mutation
would potentially be protective against
numerous microbes.

CD14 is a multifunctional receptor
for LPS and other bacterial wall com-
ponents (Koppelman and Postma,
2003). As CD14 has also been found
to induce cellular activation in re-
sponse to lipoteichoic acid through a
TLR2-dependent pathway, (Schroder
et al., 2003) and has binding affinity
for PGN (Dziarski, 2003), it is thought
to be important in host response to S.
aureus. Similar to TLR2 signaling,
CD14 utilizes MyD88 to activate NF-
kB. It is also shown to induce IL-1b
production through a caspase-1-depen-
dent pathway (Tschopp et al., 2003).
Although it is expressed as a soluble or
membrane-bound receptor predomi-
nantly on monocytes, it has also been
found on a variety of cells, including
KC (Song et al., 2002).

Fueled by the ‘‘Hygiene Hypoth-
esis’’ and the epidemiological data
showing that the presence of LPS is
inversely correlated with atopy, numer-
ous genetic studies of atopic popula-
tions have been performed looking at
CD14 variants (Koppelman and Post-
ma, 2003; Sengler et al., 2003; Liang
et al., 2006). These studies have shown
conflicting results with different atopic
phenotypes, using different methodol-
ogies. Nevertheless, the consensus
seems to be that although CD14 is a
polymorphic gene, no polymorphisms
appear to strongly associate with the
atopic phenotypes evaluated to date.
Equally confusing is the identification
of both reduced and/or elevated levels
of soluble CD14 in breast milk from

mothers with at-risk children (Jones
et al., 2002; Zdolsek and Jenmalm,
2004; Rothenbacher et al., 2005). The
general assumption is that elevated
levels of soluble CD14 indicate a
recent or ongoing infection with either
a Gram-positive or -negative bacteria.
Therefore lower levels would reflect a
reduced capacity to respond to micro-
bial signals or decreased exposure to
microbial signals. We have not ob-
served any differences in the expression
of CD14 on KC propagated from
nonlesional skin of AD, psoriasis, or
nonatopic controls (McGirt et al.,
2006). In conclusion, the current data
does not clearly implicate a role for
CD14 in the pathogenesis of AD or its
susceptibility to cutaneous infections.

NOD1 (or CARD4) and NOD2 (or
CARD15) receptors make up the CARD
subfamily within the larger NOD-leu-
cine rich repeat protein family, a group
of intracellular innate immune recep-
tors that respond to a variety of micro-
bial products. The other NOD-leucine
rich containing protein subfamily is the
pyrin subfamily, which includes
Nalp1–14 (Wilmanski et al., 2008).
The best known of these is Nalp3 or
cryopyrin. Activating mutations in this
protein have been linked to a number
of autoinflammatory diseases such as
familial cold autoinflammatory syn-
drome, Muckle–Wells syndrome and
neonatal onset multisystem inflamma-
tory disease (Farasat et al., 2008).
NOD-leucine rich containing protein
family members make up the inflam-
masome, a macromolecular structure
so named for its ability to induce
caspase-1 activation and ultimately
the release of IL-1b and IL-18 (Drenth
and van der Meer, 2006). Little is
known about the microbial specificity
of the pyrin subfamily members
although both Nalp1 and 3 are thought
to respond to S. aureus (Mariathasan
et al., 2006; Wilmanski et al., 2008).
More is known about NOD1 and
NOD2, which respond to degradation
products of PGN (Girardin and Phil-
pott, 2004). Specifically, NOD1 senses
diaminopimelic acid-type PGN, which
is produced by Gram-negative bacter-
ia, and NOD2 senses muramyl dipep-
tide, a motif found in PGNs from all
bacteria, including S. aureus (Girardin
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and Philpott, 2004). Recently, KCs
were shown to express NOD1 and
NOD2, which were presumed to be
functional as stimulations with PGN
resulted in IL-6 production (Song et al.,
2002). Furthermore, KC stimulated
with the NOD2-specific ligand, mur-
amyl dipeptide, produced AMP, human
b-defensin (HBD) 2 (Voss et al., 2006;
Kim et al., 2008b). Importantly, NOD1
is located on a region of chromosome
7p14-p15 that has been linked with
atopy (Weidinger et al., 2005). Poly-
morphisms in NOD1 (Weidinger et al.,
2005), NOD2 (Kabesch et al., 2003;
Macaluso et al., 2007), and Nalp12
(Macaluso et al., 2007) have been
associated with the phenotype of AD
or allergy.

Peptidoglycan recognition proteins
(PGLYRPs) are innate immunity mole-
cules that are secreted and were first
identified in insects (Mathur et al.,
2004; Lu et al., 2006b). Mammals have
four PGLYRPs. PGLYRP-1, -3, and -4
are able to kill bacteria by associating
with the PGN on bacterial cell walls
(Dziarski and Gupta, 2006). This is a
different mechanism than that used
by AMPs that kill bacteria by mem-
brane permeabilization. Interestingly,
PGLYRP-2 is an amidase and has anti-
inflammatory actions as it hydrolyzes
bacterial PGN and therefore reduces
its proinflammatory actions through
other innate networks. PGLYRP-1 is
expressed primarily in the granules
of PMNs. PGLYRP-2 is secreted
from the liver into the blood (Dziarski
and Gupta, 2006). PGLYRP-3 (or
PGRP-1a) and PGLYRP-4 (or PGRP-
1b) are released from epithelial
cells of the skin, eyes, mouth, and
intestinal tract and are bactericidal
for many Gram-positive and -negative
bacteria (Lu et al., 2006b). Expression
of PGLYRP-3 is induced in primary
human KC by stimulation with the
staphylococcal-specific pathogen-
associated molecular patterns, lipotei-
choic acid (McGirt et al., 2006).
Interestingly, PGLYRP-3 and PGLYRP-
4 genes are located in the epidermal
differentiation gene cluster on
chromosome 1 within the PSOR4 and
ATOD2 loci (Sun et al., 2006). Clearly
further studies are needed to character-
ize the importance of these receptors in

recognition of S. aureus in patients
with AD.

Other important components of the
innate immune system are the soluble
PRRs such as collectins, ficolins, and
pentraxins. They recognize unique mo-
tifs on bacteria (Gram-positive and -
negative), fungi, and virus. Soluble
PRRs are thought to act as opsonins or
they can directly activate the comple-
ment system (Lu et al., 2002). MBL, a
collectin family member and ficolins
(L-ficolin and H-ficolin) initiate the
lectin pathway of complement activa-
tion on binding to microbial carbo-
hydrates (Holmskov et al., 2003; Endo
et al., 2006), whereas pentraxins acti-
vate the classical complement pathway
(Bottazzi et al., 2006). Complement
activation promotes the opsonization of
microbes and direct killing of patho-
gens through the formation of the
membrane attack complex, the cytoly-
tic end product of the complement
cascade. Membrane attack complex is
known to form a transmembrane chan-
nel, which causes osmotic lysis of the
target cell. Complement activation in-
duces the release of proteolytic frag-
ments of C3 and C5, which have potent
chemotactic activity for innate immune
cells (Carroll and Fischer, 1997;
Medzhitov, 2007). MBL-deficient mice
are more susceptible to intravenous
inoculation with S. aureus than wild-
type mice (Shi et al., 2004; Kars et al.,
2005). Interestingly, serum MBL defi-
ciency has been observed in 10–15% of
Caucasians with significantly higher
percentages reported in subjects of
African or South American Indian
descent (Bouwman et al., 2006). Such
deficiencies and their variant alleles
within the coding region of MBL have
been associated with increased sus-
ceptibility to bacterial infections in
neutropenic patients, poorer prognosis
in cystic fibrosis patients, or more
severe meningococcal disease (Eisen
and Minchinton, 2003; Bouwman
et al., 2006; Kaur et al., 2006b). There
is very preliminary epidemiologic evi-
dence to suggest MBL is important for
clearance of several common viruses
(hepatitis B, HIV, and influenza A) but
virtually nothing is known about how
MBL levels might affect the immune
response to HSV infection (Bouwman

et al., 2006). We recently looked at
MBL levels and a functional assay for
MBL (for example, determining MBL
C4b deposition capacity with an anti-
human C4 monoclonal antibody; IBT
Reference Laboratory, Lenexa, KS)
and found no difference in AD patients
who had never had an episode of
eczema herpeticum and patients
who had this HSV skin complication
(Wollenberg, A and Beck, LA, personal
communication).

Despite studies showing a correla-
tion between MBL levels or comple-
ment activity and peripheral
eosinophilia or FEV1 in patients with
asthma and allergic rhinitis, the major-
ity of papers have failed to show an
association of any atopic phenotype
and frequency of MBL polymorphisms
(Aittoniemi et al., 2005; Leung et al.,
2006; Kaur et al., 2006a; Muller et al.,
2007; Wang et al., 2007). Neverthe-
less, a recent report highlights a clear
association between extremely low
MBL levels and the BB MBL haplotype
in several members of a Turkish family
who also suffered from recurrent sta-
phylococcal infections (skin, ear, and
airway) and a pruritic, eczematous
dermatitis (Brandrup et al., 1999).
Small genetic studies targeting AD
patients have shown conflicting results
with lack of an association between
MBL2 polymorphisms and reduced
MBL levels in Japanese subjects (Ha-
shimoto et al., 2005), whereas a report
on 4150 Brazilian AD patients de-
monstrated that this variant was ob-
served more frequently than in a
healthy control population with an
OR of 2.4 (Brandao et al., 2008).
Further studies are needed to sort out
the role of these soluble PRRs in AD
and its susceptibility to cutaneous
colonization and infection.

INNATE IMMUNE CELLS
Natural killer cells
NK cells are an important component
to the innate immune system that lyse
host cells which have been infected
with microbes without any need for
prior activation. The lysis is mediated
by the release of perforin and granzyme
from cytoplasmic granules. In addition,
NK cells can release numerous inflam-
matory cytokines, which likely recruit
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other innate immune cells. Circulating
NK cells are significantly reduced in
AD patients and are functionally de-
fective as noted by the reduced release
of a Th1 cytokine, IFNg but normal
levels of the Th2 cytokine, IL-4, and
increased apoptosis (Katsuta et al.,
2006). These functional defects were
reversed when the activated peripheral
blood monocytes were removed. This
finding needs to be confirmed and its
relationship to cutaneous infections
explored.

Plasmacytoid dendritic cells
pDCs are a critical source for the
antiviral type I IFNs (IFNa and IFNb).
Although the number of pDCs in the
circulation is increased in AD (Uchida
et al., 2001), skin lesions have signifi-
cantly diminished numbers compared to
other inflammatory skin conditions such
as psoriasis, contact dermatitis, or lupus
(Wollenberg et al., 2002). pDCs from
AD patients may also be functionally
impaired as cross-linking of their high
affinity IgE receptor (FceR1) reduces IFN
production (Novak et al., 2004).

Neutrophils
A striking finding in lesional biopsies
from AD patients is the absence of
PMNs, even in the setting of intense
scratching or S. aureus colonization
and/or infection. A number of studies
have pointed to a chemotactic defect in
AD PMNs (Michaelsson, 1973) and
such defects were found to correlate
with markers of AD disease severity–IgE
levels (Hill et al., 1974) and recurrent
bacterial infections (Rogge and Hani-
fin, 1976; Dahl et al., 1978; Ternowitz
et al., 1987). PMN functional activities
are particularly impaired in AD patients
with concomitant bacterial infections
especially during the course of an
infectious episode (Ternowitz et al.,
1987). Rogge and Hanifin (1976)
showed impaired PMN chemotactic
activity in patients with severe erythro-
derma and S. aureus colonization
assessed by the Boyden chamber.
Other groups suggested decreased che-
motactic responses to be a separate
defect in AD without correlation to
infection or IgE levels (Snyderman
et al., 1977; Galli et al., 1983). Hanifin
et al. suggested that factors in the

plasma of AD patients might be re-
sponsible for the decreased responsive-
ness of AD PMNs to specific
chemoattractants (Rogge and Hanifin,
1976). Other functional alterations ob-
served in AD PMNs included an
impaired release of b-glucuronidase
(Christophers and Henseler, 1987),
defects in LTB4 production and release
(Schafer et al., 1991), absent deposition
of extracellular PMN granule proteins
(lactoferrin and PMN elastase) in skin
biopsies with normal serum elastase
levels (Ott et al., 1994), and impaired
phagocytosis and a reduced capacity to
produce reactive oxygen species
(Mrowietz et al., 1988). AD PMNs do
not seem to have baseline adherence
differences when compared to controls
although they demonstrated a blunted
response to histamine and ispoproter-
enol-induced downregulation of adhe-
sion (Thulin et al., 1980). We found
that PMNs from AD patients had a
markedly decreased CD11b-upregula-
tion response to both activating stimuli
(CXCL8/IL-8 and CXCL1/GRO-a) and
priming (GM-CSF) stimuli (Bankova
et al., 2007). The work of numerous
laboratories suggests that the b2 integ-
rins, Mac-1 (CD11b/CD18), and LFA-1
(CD11b/CD18) involved in a very
different way in PMN migration that
are essentially organ specific. Both
components of Mac-1—CD11b and
CD18—are critical to PMN migration
to the skin. Therefore, the diminished
upregulation of CD11b, would explain
the lack of PMNs in AD skin but other
organs such as the lung, joints, and
peritoneum would be able to compen-
sate for this Mac-1 defect by engaging
CD18-independent or CD11b-inde-
pendent mechanisms for PMN recruit-
ment. The lack of PMNs may also be
due to the reduced tissue neutrophilia
which is due to the reduced production
of PMN chemoattractants such as
the cathelicidin (LL-37), which acts
through the FMLP receptor or reduced
expression of IL-8 (CXCL8; Nomura
et al., 2003; Howell et al., 2006c). As
PMNs are critical cells in the initial
response to all pathogens it is not
surprising that a defect in PMN recruit-
ment to the skin would make AD
patients susceptible to a wide range of
cutaneous microbes.

ANTIMICROBIAL PEPTIDES
An important component of the cuta-
neous innate immune response is the
production of AMPs. KCs produce
several peptides with antimicrobial
actions including S100 proteins, ribo-
nuclease 7, LL-37, human defensin-a
and -b, sphingosine, and dermcidin
(Schroder and Harder, 2006). Several
chemokines, such as macrophage inflam-
matory protein-3a (MIP-3a (CCL20)),
monokine induced by IFN-g (CXCL9),
IFN-inducibe protein (CXCL10), and
IFN-inducible T-cell a-chemoattractant
(CXCL11), have also been shown
to have antimicrobial activity (Yang
et al., 2003). AMPs directly kill a broad
spectrum of microbes including Gram-
positive and -negative bacteria as well
as fungi and certain viruses. The anti-
microbial properties of these peptides
arise from their ability to integrate into
and disrupt the cellular membrane of
the offending organism (Izadpanah and
Gallo, 2005). AMPs can also modulate
host immune response including leu-
kocyte chemotaxis and activation of
PRRs (Izadpanah and Gallo, 2005).
With the exception of HBD1, most
AMPs are undetectable in skin under
basal conditions, but are induced after
injury or inflammatory stimuli (Liu
et al., 2002; Sorensen et al., 2005;
Schroder and Harder, 2006; Aberg
et al., 2008). LL-37, HBD2, and
HBD3 have been shown to have
antistaphylococcal activity (Schibli
et al., 2002; Menzies and Kenoyer,
2005). LL-37 is also recognized for its
antiviral activity against HSV-1, HSV-2,
and VV (Howell et al., 2004, 2006b). In
KCs, HBD2 and LL-37 are stored in
lamellar bodies along with barrier
lipids and cornified envelope (CE)
proteins (Oren et al., 2003; Braff
et al., 2005). The colocalization of
AMPs and CE proteins suggests that
these two innate functions may interact
in some way.

The antimicrobial activity of LL-37 is
controlled at both the transcriptional
and post-transcriptional level. Infec-
tion, inflammation, wounding, and
1,25-dihydroxyvitamin D3 are known
to induce LL-37 gene expression
(Schauber et al., 2006). But the inactive
precursor (hCAP18) must be enzyma-
ticly processed to release the C-term-
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inal peptide (that is, LL-37), which
confers it with antimicrobial properties.
The hCAP18 N-terminal peptide is a
cathelin-like protein with weak anti-
microbial as well as antiproteinase
activity. It has been suggested that this
protein may protect cells from exces-
sive proteolysis by host or microbial
cysteine proteases (Zaiou et al., 2003).
A recent study by Yamasaki et al.
(2006), has demonstrated that the
activation of hCAP18 in KC is regulated
by the serine proteases, SC tryptic
enzyme (kallikrein 5; KLK5) and SC
chymotryptic protease (KLK7). Interest-
ingly, the SPINK5-deficient mouse,
which lacks the serine protease
inhibitor lympho-epithelial Kazal-type-
related inhibitor, has increased
epidermal antimicrobial activity, which
can be normalized with immuno-
absorption of LL-37 (Yamasaki et al.,
2006). These observations suggest that
the proteolytic activity at the skin
surface can modulate the actions of
AMPs.

Unfortunately microbes such as S.
aureus produce proteases or toxins,
which can interfere with host AMPs.
For example, aureolysin, a metallo-
proteinase produced by S. aureus, can
inactivate LL-37 (Sieprawska-Lupa
et al., 2004). Several S. aureus strains
have been identified that express the
gene,mprF, which confers resistance to
several host defense peptides such as
defensins and protegrins by modifying
the charge on bacterial membranes
(Peschel et al., 2001).

Besides their antimicrobial property,
the AMPs act as a link between innate
and adaptive immune responses. LL-37
and some defensins have been shown
to be chemoattractant for PMNs,
monocytes, and T cells (Yang et al.,
2001; Niyonsaba et al., 2004). b-
Defensins exhibit chemotactic activity
for immature DC by binding to the CC
chemokine receptor CCR6 (Yang et al.,
1999). LL-37 is also involved in wound
repair by promoting angiogenesis and
epithelial growth (Carretero et al.,
2008). Recently, Aberg et al. (2008)
have shown that mice deficient in
CRAMP (the murine homolog of LL-
37) have a delay in the permeability
barrier recovery after a wound
injury.

Ong et al. (2002) were the first to
recognize that AD patients had re-
duced HBD2 epidermal immunoreac-
tivity and mRNA expression compared
to psoriasis patients. A follow-up study
by Nomura et al. (2003) found a
reduction in HBD2, as well as HBD3
in lesional skin biopsies from AD
compared to psoriasis patients using
GeneChip microarrays. The reduced
AMP expression was due, in part, to
the inhibitory effects of the Th2 cyto-
kines (IL-4 and IL-13) and the immu-
nomodulatory cytokine, IL-10 on KCs
(Ong et al., 2002; Nomura et al., 2003;
Howell et al., 2006b). Several studies
have shown that the AMP, LL-37 is
necessary for an adequate response to
both HSV and VV (Howell et al., 2004,
2006b) and that LL-37 levels from skin
biopsies are significantly reduced in
patients with AD compared to psoriasis
(Ong et al., 2002). Indeed, Howell
et al. report that the LL-37-deficient
(Cnlp"/") mouse skin has higher re-
plication of HSV than wild-type mice,
suggesting that the lack of this AMP
may provide an explanation for AD
patients’ predisposition to eczema her-
peticum (Howell et al., 2006c). This
reduced production of LL-37 may also
predispose AD patients to eczema
vaccinatum (Howell et al., 2006a).
In addition, work by Kim et al.
(2007a), recently demonstrates lower
level of MIP-3a in AD compare to
psoriasis, likely due to the overexpres-
sion of Th2 cytokines. Interestingly,
the authors show the importance of
MIP-3a in the innate immune response
against VV.

Sphingosine is a metabolite of cer-
amide produced by the outer layers of
the skin that has antimicrobial actions
on S. aureus at physiological levels,
and is thought to be important in
preventing bacterial colonization on
healthy skin. The SC of AD patients
have significantly reduced levels of
sphingosine compared to controls,
which is assumed to be the conse-
quence of altered ceramide metabo-
lism. This may be involved in AD
patients’ high colonization rate with S.
aureus (Arikawa et al., 2002).

Dermcidin (DCD) is a recently dis-
covered broad-spectrum AMP, which is
produced in human eccrine glands,

and secreted in sweat (Rieg et al.,
2005). AD patients have significantly
reduced levels (Rieg et al., 2005). AD
patients with the greatest reduction in
dermcidin in the sweat had the greatest
problems with bacterial and viral skin
infections (Rieg et al., 2005). We can
infer from these data that the lack of
dermcidin in the sweat of AD patients
has a notable role in contributing to the
high susceptibility of the patients to
skin colonization and infection (Rieg
et al., 2005).

Vitamin D has recently attracted
considerable attention, at least in part,
for its ability to regulate AMP expres-
sion in monocytes and KCs (Gombart
et al., 2005; Weber et al., 2005). KCs
are the only cells in the body able to
synthesize the active metabolite
1,25(OH)2vitamin-D3 (1,25D3) from
its inactive precursor, 7-dehydrocho-
lesterol. The key enzymes for this
conversion are D-25 hydroxylase (the
equivalent of CYP27 in the liver) and
25OHD-1ahydroxylase (the equivalent
of CYP27B1 in the kidney; Bikle et al.,
2004). 1,25D3 mediates its effects by
binding to the vitamin D receptor, a
member of the nuclear hormone re-
ceptor family of Zinc finger transcrip-
tion factors. Previous studies have
shown that 1,25D3 induces KC to
differentiate as determined by the ex-
pression of involucrin and transgluta-
minase, and the formation of CE. Bikle
et al. (2004) showed that mice deficient
in 25OHD-1ahydroxylase had a defect
in cornified layer and a delayed recov-
ery in permeability barrier function
after acute disruption of the SC and a
perturbation of the normal calcium
gradient. These findings suggest that
vitamin D is important in epidermal
differentiation and barrier.

More recently, vitamin D has been
recognized for its antimicrobial ac-
tions. This was first suggested when
the vitamin D response element was
identified in the promoter region of the
human LL-37 gene (Gombart et al.,
2005). Stimulation of KC with 1,25D3
not only increased expression of the
inactive precursor (hCAP-18) but also
increased the mature peptide (LL-37)
and enhanced the antimicrobial activ-
ity against S. aureus, suggesting that
1,25D3 can increase LL-37 transcrip-
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tion and activation (Schauber et al.,
2006). Liu et al. (2006) showed that
stimulation of TLR2 on monocytes by
Mycobacterium tuberculosis increases
expression of vitamin D related genes
(that is, 25OHD-1ahydroxylase and
vitamin D receptor), leading to an
increased killing of this intracellular
bacteria. Based on these findings, the
authors have speculated that African-
Americans’ susceptibility to M. tuber-
culosis infection may be due to low
serum vitamin D level that are thought
to be due to decreased UV penetration
as a consequence of their higher
epidermal melanin content. These
authors showed that vitamin D supple-
ments given to African-American sub-
jects boosted monocyte LL-37 levels to
the level observed in Caucasians.
1,25D3 is also important for the innate
immune response to injury. KCs sur-
rounding a wound, demonstrate in-
creased expression for LL-37, TLR2,
and CD14 all of which are induced
by 1,25D3 (Schauber et al., 2007).
Interestingly, the authors also reported
an increase in vivo of LL-37 and TLR2
following application of topical
1,25D3 in healthy volunteers. Studies
in inflammatory bowel disease suggest
that vitamin D is important in mucosal
barrier homeostasis by preserving the
integrity of TJs (Kong et al., 2007).
Although the mechanism underlying
these observations is still unclear, a
similar biology may be observed in the
skin. These findings highlight the im-
portance of vitamin D in microbial
recognition and response during skin
infection or just injury.

Interestingly, vitamin D receptor
polymorphisms have been described
in several inflammatory diseases such
as psoriasis (Park et al., 1999), diabetes
(Gyorffy et al., 2002), Crohn’s disease
(Simmons et al., 2000), and asthma and
atopy (Raby et al., 2004).

EPITHELIAL BARRIER
There is little doubt that there is an
epidermal barrier defect in AD. The
evidence to support this comes from
the following findings: enhanced trans-
epidermal water loss (TEWL), reduced
irritancy threshold, increased percuta-
neous absorption, and dry appearance
of lesional skin (Madison, 2003). The

first physiological evidence of an im-
paired barrier function was the demon-
stration of increased TEWL (Werner
and Lindberg, 1985). The extent of
barrier dysfunction correlates with the
degree of inflammation within AD
lesions (Lebwohl and Herrmann,
2005) and AD severity in general
(Barker et al., 2007; Hon et al., 2008).
It is important to recognize that TEWL
reflects barrier function from inside-
out, whereas the more clinically rele-
vant direction is outside-in as this is the
direction taken by allergens, irritants,
colonizing bacteria, and pollutants.
Many groups are working on methods
to more accurately assess barrier func-
tion from this direction both ex vivo
and in vivo.

The epidermis also functions as a
primary defense and biosensor to the
external environment. Some of this
barrier function resides within the SC,
but once this barrier has been breached
the TJs found at the level of the stratum
granulosum are the next level of
defense. A disturbance in barrier favors
the penetration of microbes and aller-
gens and other environmental insults
(toxins, irritants, pollutants) and is now
recognized as a central feature of AD
(Cork et al., 2006). SC has been likened
to a brick wall, consisting of terminally
differentiated KCs or corneocytes
(bricks), which are surrounded by a
matrix of specialized lipids (mortar;
Elias and Feingold, 1992). The major
lipids in SC are ceramides (50% by
mass), fatty acids (10–20% by mass),
and cholesterol (25% by mass). This
creates a barrier that helps to keep
water within the body and prevent the
entrance of pathogens and allergens
(Choi and Maibach, 2005). AD patients
have reduced levels of the SC lipids,
ceramide (Imokawa, 2001; Pilgram
et al., 2001). Stress may aggravate this
by the production of endogenous glu-
cocorticoids, which suppress epider-
mal lipid production (Choi et al.,
2005). Lastly, a hallmark of AD is
intense pruritus, which, characteristi-
cally occurs before a skin lesion devel-
ops. This intense itch leads invariably
to extensive scratching, and this me-
chanical trauma is also capable of
disrupting the CE. In addition to pro-
viding a barrier, CE also inhibits patho-

gen colonization by virtue of its low
water content, acidic pH, resident
microflora and production of numerous
AMPs (Elias and Steinhoff, 2008).

AD barrier dysfunction may also
have a genetic basis, which was first
suspected when genome-wide studies
identified linkage to the epidermal
differentiation complex on Ch 1q21
(ATOD2; Cookson et al., 2001). In
2006, null mutations in a specific gene
within the epidermal differentiation
complex, namely, filaggrin (FLG) were
identified and shown to be strongly
linked to the phenotype of AD and
asthma associated AD, whereas no
associations were observed with psor-
iasis, another inflammatory skin dis-
ease with epidermal differentiation
complex (1q21-PSOR4) linkage (Pal-
mer et al., 2006; Zhao et al., 2007).
Although up to 30% of AD patients
from European cohorts have been
found to have null mutations in FLG,
it seems unlikely that this will explain
the increase in TEWL that is observed
in nearly 100% of AD patients with
active disease (Palmer et al., 2006;
Hubiche et al., 2007; Gupta et al.,
2008). We and others have shown that
FLG is not expressed at other mucosal
surfaces relevant for atopic diseases
(upper or lower airway or esophagus),
suggesting that the association of FLG
mutations with other atopic disorders is
likely due to the common feature of
allergen sensitization through the skin
(Ying et al., 2006; Morar et al., 2007;
De Benedetto et al., 2008b). FLG levels
in the skin can also be modulated by
Th2 cytokines with IL-4 and IL-13
downregulating expression on human
differentiated KC (Howell et al., 2007).
Although the number of FLG mutations
identified is now over 12 it is still
not known whether and how these
translate into quantifiable measures of
skin barrier dysfunctions (Chen et al.,
2008; Nomura et al., 2008). We
and others have identified several
other CE proteins found within the
epidermal differentiation complex
(Ch 1q21) that are reduced in
expression profiling studies of AD skin
or epithelial explants and include
loricrin, involucrin, and late CE
proteins suggesting there are other
proteins that are important in the
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barrier function of this outer layer of the
skin (Sugiura et al., 2005; Morar et al.,
2006; De Benedetto et al., 2007; Kim
et al., 2008a).

Premature desquamation can also
diminish barrier function at the level of
the SC (Cork et al., 2006). Numerous
proteases have been identified that
disrupt corneodesmosomes, a structure
important for CE. The balance between
the levels of proteases (chymotryptic,
tryptic, serine, and cysteine proteases)
and protease inhibitors (serine protease
inhibitor Kazal-type 5 (SPINK5)] and
the cysteine protease inhibitor (cystatin
M/E)) may determine whether an in-
dividual has excessive corneodesmo-
some breakdown and thinning of the
SC (barrier) or too little corneodesmo-
some breakdown and thickened SC
(barrier; Cork et al., 2006). Mutations
in SPINK5 are thought to cause the
profound skin barrier dysfunction and
atopic diathesis characteristic of Neth-
ertons syndrome (Chavanas et al.,
2000). Ultrastrutural analyses reveal
an increased cleavage of corneodesmo-
somes and reduction in intercorneocyte
cohesion (Cork et al., 2006). Over the
past decade, several groups have de-
monstrated a dysregulation of epider-
mal genes encoding for other proteases
or antiproteases in patients with AD
including dipeptidyl peptidase 10
(DPP10), SPINK5 (Nishio et al., 2003),
transglutaminase (TGM), and SC chy-
motryptic enzyme (SCCE, KLK7; Vasi-
lopoulos et al., 2004).

Intercellular junctions have long
been recognized as the regulators of
permeability in simple epithelium. In-
tercellular junctions consist of adherens
and TJs, which are closely associated
ultrastructurally because of their asso-
ciation with a circumferential belt of
actin. TJ are typically observed on the
apical aspects of stratum granulosum
cells and appear as ‘‘kissing points’’ in
electron microscopy images where the
intercellular space is almost obliterated
and hence their alternative name,
zonulae occludens (Schluter et al.,
2004; Niessen, 2007). It was not until
2002 that their role in stratified squa-
mous epithelium of the skin was
appreciated (Pummi et al., 2001).
Furuse et al. (2002) reported that
claudin-1-deficient mice died within

24 hours of birth with wrinkled skin,
severe dehydration, and increased
epidermal permeability as measured
by dye permeability and TEWL.
Importantly, these mice had a normal
functioning SC (and normal expression
of SC proteins) but a dysfunctional TJ.

TJ constitute the ‘‘gate’’ to the
passage of ions and molecules through
the paracellular pathway and function
as a ‘‘fence’’ within the plasma mem-
brane to create and maintain apical
and basolateral membrane domains or
cell polarity (Schluter et al., 2007).
They consist of a multiprotein complex.
The TJ proteins identified so far include
the transmembrane proteins; claudin
family members, junctional adhesion
molecule family members, occludin,
and tricellin and the cytoplasmic plaque
proteins to which these transmembrane
proteins attach; zonulae occludens
(ZO)-1, ZO-2, ZO-3, MUPP-1, MAGI,
and cingulin (Niessen, 2007). The cyto-
plasmic plaque proteins bind to actin
and myosin and are thought to com-
municate changes in junctional integ-
rity through Rho-specific and other
signaling pathways (Aijaz et al.,
2005). This suggests that the loss of
barrier integrity would initiate a signal-
ing response that among other func-
tions would induce KC proliferation.
We have recently shown that claudin-1
expression is markedly reduced in AD
skin and this suggests that the barrier
defect in this disease may also be
at the level of TJ (De Benedetto et al.,
2008a). The import of claudin-1 in TJ
formation was highlighted in a
seminal paper demonstrating effective
TJ formation in fibroblasts when
they were reconstituted with claudin-1
(and not occludin) and that the TJ
formed by claudin-1 had strands noted
by TEM that were continuous (Furuse
et al., 1998). In addition a recently
described syndrome, which is due to
claudin-1 mutations called neonatal
ichthyosis with sclerosing cholangitis
further highlights the biological signifi-
cance of this protein. These subjects
develop some of the features observed
in AD, such as erythema, dry flaky skin,
and alopecia in addition to unique
features such as severe liver and
gallbladder abnormalities (Hadj-Rabia
et al., 2004).

It is well recognized that microbes
present multiple virulence factors cap-
able of interfering with the host barrier
function. Various strains of S. aureus
produce virulence factors with proteo-
lytic activity (Kanzaki et al., 1997;
Miedzobrodzki et al., 2002). Three
major extracellular proteinases have
been described and include metallo-
proteinases (S. aureus metalloprotei-
nase; aureolysin), serine proteinases
(SASP; V8 protease, glutamyl endopep-
tidase), and the cysteine (thiol) protei-
nases (staphylopain; Shaw et al., 2004).
How these enzymes contribute to the
skin barrier impairment in AD is still
unclear. Staphylococcal toxins espe-
cially the exfoliative toxins A, B, and D,
are glutamate-specific serine proteases
that cleave a single peptide bond in the
extracellular region of desmoglein 1,
causing the loss of KC desmosomal
adhesion in the superficial epidermis
(Hanakawa et al., 2002; Nishifuji et al.,
2008). On the other hand, certain
viruses and bacteria use intercellular
junction proteins as receptors to infect
KC. For example, nectin-1, an immu-
noglobulin-like molecule which colo-
calizes with E-cadherin to form
adherens junctions in epithelial cells,
has been recognized as a receptor for
HSV-1 (Spear and Longnecker, 2003).
Importantly, nectin-1 is not available
for viral binding unless TJ are disrupted.
Calcium depletion of human epithelial
cell lines in vitro, which disrupts TJ,
rapidly induced redistribution of nec-
tin-1 to the cell surface, and increased
viral attachment (Galen et al., 2006).

It is not just microbes that have
evolved to express factors capable of
breaking barrier but also common
ubiquitous allergens such as house dust
mites (Dermatophagoides pteronyssi-
nus (Der p) and Dermatophagoides
farinae (Der f); Chapman et al., 2007).
These allergens like many others en-
code for both cysteine and serine
proteases. The mechanisms by which
house dust mite proteases activate
target cells are beginning to be defined.
Two general mechanisms have
emerged, which are not mutually ex-
clusive. First, Der p 1 can cleave
several relevant cell surface molecules
including CD23, CD25, and CD40
(Shakib et al., 1998; Ghaemmaghami
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et al., 2002). Second, Der p can
activate the protease-activated receptor
family of G-protein coupled cell sur-
face receptors (Kauffman et al., 2006),
which has been shown to induce
airway inflammation by stimulating
the release of cytokines and chemo-
kines from respiratory epithelial cells
(Kauffman et al., 2006). Although
studies on the effect of dust mite
protease in human skin are still limited,
evidence is growing that protease-
activated receptor-2 is important in
epidermal permeability barrier home-
ostasis by mediating signaling from
serine proteases in the SC (Hachem
et al., 2006).

Altogether, these findings suggest
that patients with AD may have a skin
barrier defect that has both a genetic
and acquired basis. This defect may be
further exacerbated by environmental
factors such as scratching, use of
detergents, microbial colonization/in-
fection, and exposure to protease-bear-
ing allergens. The assumption is that
this barrier defect leads to greater
microbial invasion and allergen sensi-
tization.

EFFECT OF TH2 CYTOKINES ON
CUTANEOUS INNATE IMMUNE
RESPONSES
Substantial evidence supports the idea
that allergic diseases have a ‘‘Th2
bias’’, with excess production of Th2
(IL-4, IL-5, and IL-13) cytokines that
recapitulate many of the key features
including IgE isotype switching and
eosinophilia. The precise molecular
mechanisms for the ‘‘Th2 bias’’ in
atopy are complex, and involve both
genetic and environmental factors
(Leung et al., 2004a).

Leung et al. have implicated the
Th2-polarized environment as a key
factor in the epithelial production of
fibronectin and fibrinogen which can
act as substrates for S. aureus adher-
ence (Cho et al., 2001). Growing
evidence suggests that this Th2 bias
may also adversely affect the innate
immune response in the skin of AD
patients (Howell, 2007). In a recent
collaborative study with Dr Howell and
Dr Leung, we have noted that most AD
patients have reduced FLG immunor-
eactivity in lesions compared to nonle-

sional skin and this deficiency is due, in
part, to the overexpression of Th2
cytokines, which we showed
could downregulate FLG expression in
differentiated KC (Howell et al., 2007).
This work suggests that filaggrin
defects can develop as an acquired

and/or genetic defect. Two other CE
proteins, loricrin and involucrin, ap-
pear to be reduced in the lesional skin
of AD patients. Like filaggrin the
expression of these proteins were also
downregulated by Th2 cytokines (Kim
et al., 2008a).

Innate immune dysfunction in AD

Genetic (FLG)

Acquired (Th2 cytokines,
itch–scratch cycle)

Genetic (SPINK5, KLK7) 
Acquired (proteases-

allergens and microbes)

Microbes
Toxins

Allergens

FLG,   LOR and
  INV, lipid defects,

TJ defects

Genetic (?)
Acquired (Th2 cytokines)

Genetic (?)
Acquired (?)

Genetic (?)
Acquired (   IL-8/CXCL8,

MIP3α/CCL20,
PMN chemotaxis defect)

Proteases
Protease inhibitors

AMPs (HBD2,
HBD3, LL37)

Altered expression or 
function of PRRs

(TLR2, TLR9, NOD1-2,
CD14, MBL)

PMN
NK (circulation)

pDC TEWL

IL-8/CXCL8 and
MIP3α/CCL20

Proteases

Innate
receptors

Innate
immune cells

Antimicrobial
proteins

Epithelial
barrier

Figure 1. Overview of innate immune defects observed in AD. A variety of defects both genetic and
acquired have been identified in the innate immune system in AD and include barrier defects, reduced
antimicrobial peptide release, genetic polymorphisms, and dysfunction in PRRs, and diminished
recruitment of innate immune cells (PMNs, pDC, and NK cells) to the skin. Some of these defects precede
the development of the disease and others develop as a consequence of the disease process and affect AD
severity. The skin barrier function is impaired in AD as a consequence of reduced lipids (sphingosine and
ceramide), abnormal keratinization which is due to dysfunctional filaggrin and other CE components and
mechanical trauma or scratching. Clinically this is supported by the increased transepidermal water loss
(TEWL) observed in both lesional and nonlesional skin. This barrier breakdown creates a portal of entry
for pathogens, allergens and toxins. Additionally, AD keratinocytes have an aberrant response to
microbes that in addition to the diminished recruitment of innate immune cells (PMNs, pDC, and NK
cells) to the skin may account for AD patients’ susceptibility to pathogens such as S. aureus, HSV, and
VV. The reduced recruitment of cells of the innate immune system may be explained in part by
polymorphisms in pathogen related receptors such as TLR2, TLR9, NOD1 or 2, and possibly CD14 or
MBL. The production of antimicrobial peptides (LL-37, HBD2, HBD3, Dermcidin and CCL20/MIP3a) is
reduced in AD patients compared to either healthy controls or psoriasis. This is thought to be due, in part,
to the Th2 cytokines produced by inflammatory cells, which have an inhibitory effect on keratinocyte
production of these peptides and on CE proteins. The paucity of tissue PMN in AD lesions may be
explained in part by reduced chemoattractants such as LL-37 and CXCL8/IL-8, but also appears to be due
to an inherent defect in circulating PMNs that results in reduced upregulation of the b2 integrin, CD11b,
which is important for skin migration. Circulating NK cells are significantly reduced in AD patients and
are functionally defective as noted by the reduced release of the Th1 cytokine, IFNg Lastly, AD skin
lesions have significantly diminished numbers of pDC compared to other inflammatory skin. pDCs are a
critical source for the antiviral type I IFNs (IFNa and IFNb).
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Moreover, recent studies have high-
lighted the negative effect of Th2
cytokines on the lipid components of
the CE. Kurahashi et al. (2008) demon-
strated in an animal model that the
exogenous application of IL-4 delays
the recovery of skin barrier after both
tape stripping as well as acetone
disruption. IL-4 has also been shown
to inhibit ceramide synthesis in cul-
tured KCs (Hatano et al., 2005; Elias
and Steinhoff, 2008). Interestingly, Ko-
bayashi et al. (2004) reported that IL-4
treatment of cultured KC monlayers
enhanced the permeability of these
cells to FITC-dextran which was dose-
dependent fashion. In summary, this
data suggests that Th2 cytokines ad-
versely affect barrier function of the CE.
Remarkably little is known about Th2
effects on TJ function.

IL-4 induces IgE production in B
cells and suppresses anti-infectious
immune responses by downregulating
AMPs and inhibiting Th1 immunity
(Biedermann, 2006) It has been demon-
strated by Nomura et al. that the
cytokine milieu in AD prevents the
induction of multiple innate immune
response genes which is thought to be
due to lower levels of proinflammatory
cytokines (such as tumor necrosis
factor-a or IFNg) and increased Th2
cytokines (Nomura et al., 2003). Ex-
pression profiling studies on AD skin
samples have revealed reduced levels
of IL-8 (CXCL8), induced nitric oxide
synthetase, HBD2 and 3, and hCAP
transcripts when compared to psoriasis
(Nomura et al., 2003; Howell et al.,
2006a). This same group showed that
Th2 cytokines (IL-4 and IL-13) inhibit
the production of AMPs (HBD2 and 3)
and the antimicrobial chemokine MIP-
3a (CCL20), which is also important
for the recruitment of immature DCs
(Nomura et al., 2003; Kim et al., 2007a).
The KC production of induced nitric
oxide synthetase (Paludan et al., 1999)
and tumor necrosis factor-a-induced
IL-8 are inhibited by IL-4 (Raingeaud
and Pierre, 2005). IL-8 is a potent
chemokine that attracts PMNs into the
skin where they phagocytize and kill
bacteria; whereas induced nitric oxide
synthetase kills microbes by producing
nitric oxide. Interestingly, L-4 trans-
genic mice develop pruritic, inflamma-

tory skin lesions that are similar to
those observed in humans with AD
confirming that local skin expression of
Th2 cytokines are likely responsible for
at least some of the features observed in
AD (Leung et al., 2004a).

CONCLUSION
It is clear that there are a variety of
defects in the innate immune system,
ranging from barrier defects to reduced
AMP release to genetic polymorphisms
in PRRs, that collectively affect the
development and severity of AD (Fig-
ure 1). Some of these defects precede
the development of the disease and
others develop as a consequence of the
disease process. Although the focus for
several years has been to identify
defects in the innate immune system
that might explain AD patients’ sus-
ceptibility to cutaneous pathogens, it
has become clear that some innate
immune defects (for example, TLR9
gain-in-function polymorphisms) might
promote inflammation and in so doing
induce the development of AD. Cer-
tainly the reduction in AMPs, dimin-
ished recruitment of innate immune
cells (PMNs, pDC and NK cells) to the
skin, epithelial barrier disruption and
TLR2 defects are just some of the
credible explanations for AD patients’
susceptibility to pathogens such as S.
aureus, HSV, and VV. How current
topical and systemic therapies (both
OTC and Rx) affect these key innate
pathways is still largely unchartered
territory. We are just scratching the
surface of the skins’ defense system but
it promises to be an exciting ride with
many more insights to be made.
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